Lecture 6: Cooperative Control Systems

Richard M. Murray
Caltech Control and Dynamical Systems
17 March 2009

Goals:
• Definition and examples of cooperative control systems
• Distributed receding horizon control
• Survey of other results in cooperative control: formations, coverage, ...

Reading:

Adaptive Ocean Sampling Network

Goal: track the important events and dynamics in the Monterey Bay (Ca)
• Motion of vehicles is based on the observations taken by the vehicles
• Allows sensors to be positioned in the areas in which they can do the most good, as a function of the data already collected
• Cooperative control strategy is used to control the motion of the vehicles
• Summer, 2006: 10 gliders were controlled over 4 weeks to collect data
Distributed Aperature Observing Systems

TechSat 21 (AFRL)
- Collection of "microsatellites" that would be used to form a "virtual" satellite with a single, large aperture antenna
- Project cancelled in 2003 due to funding limits (12 satellites -> 3 sats -> 1 sat)

Terrestrial Planet Finder (NASA)
- Use optical interferometry to image distance stars and to detect slight shifts in the stars positions that indicate presence of planets orbiting the stars

Transportation Systems

California Partners for Advanced Transit and Highways (PATH)
- System for allowing cars to be driven automatically down a freeway at close spacing
- Idea: reduce speed of collision via close spacing; need to worry about string stability

Next generation air traffic control
- Move from a human-controlled, centralized structure to a more distributed system
- Enable "free flight" technologies allowing aircraft to travel in direct paths rather than staying in pre-defined air traffic control corridors.
- Improve the current system by developing cockpit "sensors" such as augmented
Other Cooperative Control Systems

Power grid
Communication networks
- Networking/congestion control
- Routing/queue management
- Servers/resource allocation

Supply chain mgmt

Cooperative Control Systems Framework

Agent dynamics
\[x^i = f^i(x^i, u^i) \quad x^i \in \mathbb{R}^n, u^i \in \mathbb{R}^m \]
\[y^i = h^i(x^i) \quad y^i \in \mathbb{R}^q \]

Vehicle “role”
- \(\alpha \in \mathcal{A} \) encodes internal state + relationship to current task
- Transition \(\alpha' = r(x, \alpha) \)

Communications graph \(\mathcal{G} \)
- Encodes the system information flow
- Neighbor set \(i(x, \alpha) \)

Communications channel
- Communicated information can be lost, delayed, reordered; rate constraints
 \[y^i_j[k] = \gamma y^i(t_k - \tau_j) \quad t_{k+1} - t_k > T_r \]
- \(\gamma = \) binary random process (packet loss)

Task
- Encode as finite horizon optimal control
 \[J = \int_0^T L(x, \alpha, \mathcal{E}(t), u) dt + V(x(T), \alpha(T)) \]
- Assume task is coupled, env’t estimated

Strategy
- Control action for individual agents
 \[u^i = k^i(x, \alpha) \quad \{ g^i_j(x, \alpha) : r^i_j(x, \alpha) \} \]
 \[\alpha' = \begin{cases} r^i_j(x, \alpha) & g(x, \alpha) = \text{true} \\ \text{unchanged} & \text{otherwise.} \end{cases} \]

Decentralized strategy
\[u^i(x, \alpha) = u^i(x^i, \alpha^i, y^{-i}, \alpha^{-i}, \mathcal{E}) \]
\[y^{-i} = \{ y^{j_1}, \ldots, y^{j_{m_i}} \} \]
\[j_k \in \mathcal{N}^i \\ m_i = |\mathcal{N}^i| \]
- Similar structure for role update
Information Flow in Vehicle Formations

Sensed information
- Local sensors can see some subset of nearby vehicles
- Assume small time delays, pos’n/vel info only

Communicated information
- Point to point communications (routing OK)
- Assume limited bandwidth, some time delay
- Advantage: can send more complex information

Topological features
- Information flow (sensed or communicated) represents a directed graph
- Cycles in graph ⇒ information feedback loops

Example: satellite formation
- Blue links represent sensed information
- Green links represent communicated information

Question: How does topological structure of information flow affect stability of the overall formation?

Sample Problem: Formation Stabilization

Goal: maintain position relative to neighbors
- “Neighbors” defined by graph
- Assume only sensed data for now
- Assume identical vehicle dynamics, identical controllers?

Example: hexagon formation
- Maintain fixed relative spacing between left and right neighbors

\[e_i = \sum_{j \in N_i} w_j (y_i - y_j - h_y) \]

Can extend to more sophisticated “formations”
- Include more complex spatio-temporal constraints
Stability Condition

The closed loop system is (neutrally) stable iff the Nyquist plot of the open loop system does not encircle \(-1/\lambda_0(L)\), where \(\lambda_0(L)\) are the nonzero eigenvalues of \(L\).

Theorem

Example

\[
P(s) = \frac{e^{-\pi}}{s^2} \quad K(s) = K_d s + K_p
\]

Example Revisited

Example

\[
P(s) = \frac{e^{-\pi}}{s^2} \quad K(s) = K_d s + K
\]

- Adding link increases the number of three cycles (leads to “resonances”)
- Change in control law required to avoid instability
- Q: Increasing amount of information available decreases stability (??)
- A: Control law cannot ignore the information \(\Rightarrow\) add’l feedback inserted
Improving Performance through Communication

Baseline: stability only
- Poor performance due to interconnection

Method #1: tune information flow filter
- Low pass filter to damp response
- Improves performance somewhat

Method #2: consensus + feedforward
- Agree on center of formation, then move
- Compensate for motion of vehicles by adjusting information flow

Special Case: (Asymptotic) Consensus
\[
\dot{x}_i = \sum w_{ij} (x_j - x_i) \\
\dot{x} = -Lx
\]

Consensus: agreement between agents using information flow graph
- Can prove asymptotic convergence to single value if graph is connected
- If \(w_i = 1/(\text{in-degree}) \) graph is balanced (same in-degree for all nodes) \(\Rightarrow \) all agents converge to average of initial condition

Extensions (Jadbabaie/Morse, Moreau, Olfati-Saber, Xiao, Chandy/Charpentier, ...)
- Switching (packet loss, dropped links, etc), time delays, plant uncertainty
- Nearest neighbor graphs, small world networks, optimal weights
- Nonlinear: potential fields, passive systems, gradient systems
- Distributed Kalman filtering, distributed optimization
- Self-similar algorithms for operation with varying connectedness
- See also: gossip algorithms, load balancing, distributed computing (Tsitsiklis)
Open Problems: Design of Information Flow (graph)

How does graph topology affect location of eigenvalues of L?

• Would like to separate effects of topology from agent dynamics

• Possible approach: exploit form of characteristic polynomial

\[\lambda(s) = s^n + \left(\sum w_i \right)s^{n-1} + \left(\sum w_i w_j \right)s^{n-2} + \cdots + \left(\sum w_i \cdots w_N \right) \]

• Exploit structure of quadratic invariance (Rotkowitz and Lall)

Performance

Look at motion between selected vehicles

Jin and M
CDC 04

G₁ - Control G₂ - Performance
String Stability

Goal: string of vehicles following each other
- Transients can grow as you pass down the line
- System is *string stable* if for every ϵ there exist a δ such that
\[
\sup_i \| x^i(0) \| < \delta \quad \iff \quad \sup_i \| x^i(\cdot) \|_{\infty} < \epsilon
\]

(∞ norm with respect to time)
- Problem can get worse when there are cycles of information (due to performance specs)

One solution: mix in global information
- Allow some centralized information to be used to provide stability and robustness

Robustness

What happens if a single node “locks up”

- Single node can change entire value of the consensus
- Desired effect for “robust” behavior: $\Delta x_i = \delta/N$

Different types of robustness (Gupta, Langbort & M)
- Type I - node stops communicating (stopping failure)
- Type II - node communicates constant value
- Type III - node computes incorrect function (Byzantine failure)

Related ideas: delay margin for multi-hop models (Jin and M)
- Improve consensus rate through multi-hop, but create sensitivity to communications delay
Stability of (Heterogeneous) Nonlinear Systems

Stability conditions

- Asy stable if

\[x_i^T f_i(x_i) < 0 \text{ for all } i \]

\[L \otimes BC \succeq 0 \]

- Fairly weak set of conditions: tells us when interconnection doesn’t destabilize system

Model as affine nonlinear system

\[\dot{x}_i = f_i(x_i) + B_i u \]

- allow agents to have different dynamics

Formation Operations: Graph Switching

Control questions

- How do we split and rejoin teams of vehicles?
- How do we specify vehicle formations and control them?
- How do we reconfigure formations (shape and topology)

Consensus-based approach using balanced graphs

- If each subgraph is balanced, disagreement vector provides common Lyapunov fcn
- By separately keeping track of the flow in and out of nodes, can preserve center of mass of of subgraphs after a split maneuver
Extensions to Flocking (Olfati-Saber)

Swarm behavior using nearest neighbor rules

- Implement a control law of the form
 \[u^i = f_g^i + f_d^i + f_{\gamma}^i, \]

- \(f_g^i = -V(y^i, y^{-i}) \) is a gradient-based term where \(V \) is a potential function

- \(f_d^i = \alpha(q)(v^i - v^j) \) is a damping term based on the relative velocities of neighboring vehicles

- \(f_{\gamma}^i \) is a navigational feedback term that takes into account a group objective, such as moving to a given rendezvous point

- Use potential function to keep vehicles away from obstacles but near each other

Optimization-Based Control

Task:

- Maintain equal spacing of vehicles around circle
- Follow desired trajectory for center of mass

Parameters:

- Horizon: 2 sec
- Update: 0.5 sec

Dunbar and M
Automatica, 2006
Main Idea: Assume Plan for Neighbors

Individual optimization:

\[
\min_{u_3(\cdot)} \left\{ \int_{t_k}^{t_k+T} L_3(z_3(\tau), \dot{z}_3(\tau), u_3(\tau)) \, d\tau + G_3(z_3(t_k + T)) \right\}
\]

s.t. \(\dot{z}_3(t) = f_3(z_3(t), u_3(t)) \)

\(u_3(t) \in U_3, \quad z_3(t_k + T) \in Z_{j3} \)

\(\|z_3(t) - \tilde{z}_3(t)\| \leq \delta^2 \kappa \)

Compatibility constraint:
- each vehicle transmits plan to neighbors
- stay w/in bounded path of what was transmitted

Theorem. Under suitable assumptions, vehicles are stable and converge to globally optimal solution.

Pf. Detailed Lyapunov calculation (Dunbar thesis)

Example: Multi-Vehicle Fingertip Formation

Four vehicles with \(\dot{q}_i = u_i \).

Constraints:
\(U_i = \{(v_1, v_2) \in \mathbb{R}^2 : -1 \leq v_{1,2} \leq 1\} \).

Formation defined by:
- Relative vectors \(d_{ij} \)
- COM of \(\{1, 2, 3\} \) tracking signal \((q_{ref}, \dot{q}_{ref}) \).

Coupled objective function
\[
L(z, u) = \|q_3 - q_1 + d_{31}\|^2 + \|q_2 - q_1 + d_{21}\|^2 + \|q_4 - q_2 + d_{42}\|^2
+ \|q_{ref} - (q_1 + q_2 + q_3)/3\|^2 + \sum_{i=1}^{4} \|\dot{q}_{ref} - \dot{q}_i\|^2 + \|u_i\|^2.
\]
Cooperative Tasking (Richards et al)

Formulate UAV tasking problem as cooperative control problem:

- t^p is the time at which the pth vehicle completes its task
- t is the time at which the last vehicle completes its task
- Cost function trades off input forces on vehicles with time that the overall task is completed + tasks of the individual vehicles

Solution approach: mixed integer linear programming (MILP)

$$J = \bar{t} + \rho_1 \sum_{p=1}^{N} (t^p_p + \rho_2 \sum_{t=0}^{T} (|u_1(t)| + |u_2(t)|))$$

$$\sum_{t=0}^{T} \sum_{p=1}^{N} K_{pi} b_{ijt} = 1 \quad \forall \text{ waypoints } i$$

- K_{pi} is the suitability of vehicle p to visit waypoint i
- b_{ijt} is 1 if vehicle p visits waypoint i and time t zero otherwise
Rendezvous (Tiwari et al)

Goal: collection of vehicle arrive in a given region at the same time
- \(\rho = \text{rendezvous point region, radio delta} \)
- \(\rho = \max \text{ and min distances of vehicles at the time } t_a \text{ that first of them enters rendezvous point:} \)
 \[
 \rho = \frac{\max(\|x_i(t_a)\|)}{\delta}
 \]
- Find a control law \(a \) such that from all initial conditions, \(\rho \leq \rho_{\text{des}} \leq 1 \).
- Perfect rendezvous: \(\rho = 1 \)

Approach: create invariant regions (cones) outside of forbidden regions
- Solution is centralized: each vehicle needs to know where the others are at
- Can also formulate as optimization-based problem; possibly decentralize?

Coverage (Cortes, Martinez, Bullo)

Place \(N \) vehicles over a region to maximize sensor coverage
- Partition region \(Q \) into set of polytopes \(W = \{ W^1, \ldots, W^N \} \) that cover \(Q \)
- Let \(f^i : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) represent sensing performance (small is good); \(\phi(q) = \text{distribution density function} \)
- Represent coverage problem as minimizing the cost function
 \[
 L = \sum_{i=1}^{n} \int_{W^i} f(||q - y^i||)\phi(q)dq,
 \]
- Can show that if environment is fixed, optimal sol’n is a (weighted) Voronoi partition
 \(W^i = \{ q \in Q | ||q - y^i|| \leq ||q - y^j||, \forall j \neq i \} \).
- Can implement coverage using a control law of the form \(u^i = -k(y^i - C_{V^i}) \)
- Can achieve solution using nearest neighbor communications
Summary

Information flow and stability
- Stability conditions for interconnected dynamical systems
- Extensions: centralized information, consensus, ...

Distributed optimization
- Conditions on amount of information required to solve optimization problem
- Distributed receding horizon control

Asynchronous protocols
- Decentralized strategies for control, decision making and estimation

Verification and Validation

NCS Lecture Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00</td>
<td>L1: Intro to Networked Control Systems</td>
<td>L5: Distributed Control Systems</td>
<td>L7: Distributed Estimation and Sensor Fusion</td>
<td>L11: Quantization and Bandwidth Limits</td>
<td>L13: Distributed Protocols and CCL</td>
</tr>
<tr>
<td>11:00</td>
<td>L2: Optimization-Based Control</td>
<td>L6: Cooperative Control</td>
<td>L8: Information Theory and Communications</td>
<td>L12: Estimation over Networks</td>
<td>L14: Open Problems and Future Research</td>
</tr>
<tr>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
</tr>
<tr>
<td>14:00</td>
<td>L3: Information Patterns</td>
<td>L9: Jump Linear Markov Processes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00</td>
<td>L4: Graph Theory</td>
<td>L10: Packet Loss, Delays and Shock Absorbers</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>