Introduction to Nonlinear Control
Lecture # 3

Time-Varying
and
Perturbed Systems
Time-varying Systems

\[\dot{x} = f(t, x) \]

\(f(t, x) \) is piecewise continuous in \(t \) and locally Lipschitz in \(x \) for all \(t \geq 0 \) and all \(x \in D \). The origin is an equilibrium point at \(t = 0 \) if

\[f(t, 0) = 0, \quad \forall t \geq 0 \]

While the solution of the autonomous system

\[\dot{x} = f(x), \quad x(t_0) = x_0 \]

depends only on \((t - t_0) \), the solution of

\[\dot{x} = f(t, x), \quad x(t_0) = x_0 \]

may depend on both \(t \) and \(t_0 \)
Comparison Functions

A scalar continuous function $\alpha(r)$, defined for $r \in [0, a)$ is said to belong to class \mathcal{K} if it is strictly increasing and $\alpha(0) = 0$. It is said to belong to class \mathcal{K}_∞ if it defined for all $r \geq 0$ and $\alpha(r) \to \infty$ as $r \to \infty$.

A scalar continuous function $\beta(r, s)$, defined for $r \in [0, a)$ and $s \in [0, \infty)$ is said to belong to class $\mathcal{K}\mathcal{L}$ if, for each fixed s, the mapping $\beta(r, s)$ belongs to class \mathcal{K} with respect to r and, for each fixed r, the mapping $\beta(r, s)$ is decreasing with respect to s and $\beta(r, s) \to 0$ as $s \to \infty$.
Example

- $\alpha(r) = \tan^{-1}(r)$ is strictly increasing since $\alpha'(r) = 1/(1 + r^2) > 0$. It belongs to class \mathcal{K}, but not to class \mathcal{K}_∞ since $\lim_{r \to \infty} \alpha(r) = \pi/2 < \infty$

- $\alpha(r) = r^c$, for any positive real number c, is strictly increasing since $\alpha'(r) = cr^{c-1} > 0$. Moreover, $\lim_{r \to \infty} \alpha(r) = \infty$; thus, it belongs to class \mathcal{K}_∞

- $\alpha(r) = \min\{r, r^2\}$ is continuous, strictly increasing, and $\lim_{r \to \infty} \alpha(r) = \infty$. Hence, it belongs to class \mathcal{K}_∞
\[\beta(r, s) = \frac{r}{(ksr + 1)}, \text{ for any positive real number } k, \]

is strictly increasing in \(r \) since

\[
\frac{\partial \beta}{\partial r} = \frac{1}{(ksr + 1)^2} > 0
\]

and strictly decreasing in \(s \) since

\[
\frac{\partial \beta}{\partial s} = \frac{-kr^2}{(ksr + 1)^2} < 0
\]

Moreover, \(\beta(r, s) \to 0 \) as \(s \to \infty \). Therefore, it belongs to class \(\mathcal{K} \mathcal{L} \)

\[\beta(r, s) = r^c e^{-s}, \text{ for any positive real number } c, \text{ belongs to class } \mathcal{K} \mathcal{L} \]
Definition: The equilibrium point $x = 0$ of $\dot{x} = f(t, x)$ is

- uniformly stable if there exist a class \mathcal{K} function α and a positive constant c, independent of t_0, such that
 $$
 \|x(t)\| \leq \alpha(\|x(t_0)\|), \ \forall \ t \geq t_0 \geq 0, \ \forall \ \|x(t_0)\| < c
 $$

- uniformly asymptotically stable if there exist a class \mathcal{KL} function β and a positive constant c, independent of t_0, such that
 $$
 \|x(t)\| \leq \beta(\|x(t_0)\|, t - t_0), \ \forall \ t \geq t_0 \geq 0, \ \forall \ \|x(t_0)\| < c
 $$

- globally uniformly asymptotically stable if the foregoing inequality is satisfied for any initial state $x(t_0)$
exponentially stable if there exist positive constants c, k, and λ such that

$$\|x(t)\| \leq k\|x(t_0)\| e^{-\lambda(t-t_0)}, \quad \forall \|x(t_0)\| < c$$

globally exponentially stable if the foregoing inequality is satisfied for any initial state $x(t_0)$
Theorem: Let the origin $x = 0$ be an equilibrium point for $\dot{x} = f(t, x)$ and $D \subset \mathbb{R}^n$ be a domain containing $x = 0$. Suppose $f(t, x)$ is piecewise continuous in t and locally Lipschitz in x for all $t \geq 0$ and $x \in D$. Let $V(t, x)$ be a continuously differentiable function such that

\begin{align*}
(1) \quad W_1(x) &\leq V(t, x) \leq W_2(x) \\
(2) \quad \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) &\leq 0
\end{align*}

for all $t \geq 0$ and $x \in D$, where $W_1(x)$ and $W_2(x)$ are continuous positive definite functions on D. Then, the origin is uniformly stable.
Theorem: Suppose the assumptions of the previous theorem are satisfied with

\[\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) \leq -W_3(x) \]

for all \(t \geq 0 \) and \(x \in D \), where \(W_3(x) \) is a continuous positive definite function on \(D \). Then, the origin is uniformly asymptotically stable. Moreover, if \(r \) and \(c \) are chosen such that \(B_r = \{ \|x\| \leq r \} \subset D \) and \(c < \min_{\|x\|=r} W_1(x) \), then every trajectory starting in \(\{ x \in B_r \mid W_2(x) \leq c \} \) satisfies

\[\|x(t)\| \leq \beta(\|x(t_0)\|, t - t_0), \quad \forall \ t \geq t_0 \geq 0 \]

for some class \(\mathcal{KL} \) function \(\beta \). Finally, if \(D = \mathbb{R}^n \) and \(W_1(x) \) is radially unbounded, then the origin is globally uniformly asymptotically stable.
Theorem: Suppose the assumptions of the previous theorem are satisfied with

\[k_1 \|x\|^a \leq V(t, x) \leq k_2 \|x\|^a \]

\[\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) \leq -k_3 \|x\|^a \]

for all \(t \geq 0 \) and \(x \in D \), where \(k_1, k_2, k_3 \), and \(a \) are positive constants. Then, the origin is exponentially stable. If the assumptions hold globally, the origin will be globally exponentially stable.
Example:

\[
\dot{x} = -[1 + g(t)]x^3, \quad g(t) \geq 0, \quad \forall \ t \geq 0
\]

\[
V(x) = \frac{1}{2}x^2
\]

\[
\dot{V}(t, x) = -[1 + g(t)]x^4 \leq -x^4, \quad \forall \ x \in \mathbb{R}, \ \forall \ t \geq 0
\]

The origin is globally uniformly asymptotically stable

Example:

\[
\begin{align*}
\dot{x}_1 & = -x_1 - g(t)x_2 \\
\dot{x}_2 & = x_1 - x_2
\end{align*}
\]

\[
0 \leq g(t) \leq k \quad \text{and} \quad \dot{g}(t) \leq g(t), \quad \forall \ t \geq 0
\]
\[V(t, x) = x_1^2 + [1 + g(t)]x_2^2 \]

\[x_1^2 + x_2^2 \leq V(t, x) \leq x_1^2 + (1 + k)x_2^2, \quad \forall x \in \mathbb{R}^2 \]

\[\dot{V}(t, x) = -2x_1^2 + 2x_1x_2 - [2 + 2g(t) - \dot{g}(t)]x_2^2 \]

\[2 + 2g(t) - \dot{g}(t) \geq 2 + 2g(t) - g(t) \geq 2 \]

\[\dot{V}(t, x) \leq -2x_1^2 + 2x_1x_2 - 2x_2^2 = -x^T \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} x \]

The origin is globally exponentially stable
Perturbed Systems

Nominal System: \(\dot{x} = f(x), \quad f(0) = 0 \)

Perturbed System: \(\dot{x} = f(x) + g(t, x), \quad g(t, 0) = 0 \)

Case 1: The origin of the nominal system is exponentially stable

\[
c_1 \|x\|^2 \leq V(x) \leq c_2 \|x\|^2, \quad \| \frac{\partial V}{\partial x} \| \leq c_4 \|x\| \]

\[
\frac{\partial V}{\partial x} f(x) \leq -c_3 \|x\|^2
\]
Use $V(x)$ as a Lyapunov function candidate for the perturbed system

$$\dot{V}(t, x) = \frac{\partial V}{\partial x} f(x) + \frac{\partial V}{\partial x} g(t, x)$$

Assume that

$$\|g(t, x)\| \leq \gamma \|x\|, \quad \gamma \geq 0$$

$$\dot{V}(t, x) \leq -c_3 \|x\|^2 + \left\| \frac{\partial V}{\partial x} \right\| \|g(t, x)\|$$

$$\leq -c_3 \|x\|^2 + c_4 \gamma \|x\|^2$$
\[\gamma < \frac{c_3}{c_4} \]

\[\dot{V}(t, x) \leq -(c_3 - \gamma c_4) \|x\|^2 \]

The origin is an exponentially stable equilibrium point of the perturbed system.
Example

\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= -4x_1 - 2x_2 + \beta x_2^3, \quad \beta \geq 0 \\
\dot{x} &= Ax + g(x)
\end{align*}

\[A = \begin{bmatrix} 0 & 1 \\ -4 & -2 \end{bmatrix}, \quad g(x) = \begin{bmatrix} 0 \\ \beta x_2^3 \end{bmatrix}\]

The eigenvalues of A are $-1 \pm j\sqrt{3}$

\[PA + A^TP = -I \quad \Rightarrow \quad P = \begin{bmatrix} \frac{3}{2} & \frac{1}{8} \\ \frac{1}{8} & \frac{5}{16} \end{bmatrix}\]
\[V(x) = x^T P x, \quad \frac{\partial V}{\partial x} A x = -x^T x \]

\[c_3 = 1, \quad c_4 = 2 \| P \| = 2\lambda_{\text{max}}(P) = 2 \times 1.513 = 3.026 \]

\[\| g(x) \| = \beta |x_2|^3 \]

\(g(x) \) satisfies the bound \(\| g(x) \| \leq \gamma \| x \| \) over compact sets of \(x \). Consider the compact set

\[\Omega_c = \{ V(x) \leq c \} = \{ x^T P x \leq c \}, \quad c > 0 \]

\[k_2 = \max_{x^T P x \leq c} |x_2| \Rightarrow |x_2^3| \leq k_2^2 |x_2| \]
\[k_2 = \max_{x^T P x \leq c} |[0 1] x| = \max_{y^T y \leq c} \sqrt{c} |[0 1] P^{-1/2} y| \]
\[= \sqrt{c} ||[0 1] P^{-1/2}|| = 1.8194\sqrt{c} \]
\[\|g(x)\| \leq \beta \ c \ (1.8194)^2 \|x\|, \ \forall \ x \in \Omega_c \]
\[\|g(x)\| \leq \gamma \|x\|, \ \forall \ x \in \Omega_c, \ \gamma = \beta \ c \ (1.8194)^2 \]
\[\gamma < \frac{c_3}{c_4} \ \Leftrightarrow \ \beta < \frac{1}{3.026 \times (1.8194)^2 c} \approx \frac{0.1}{c} \]
\[\beta < 0.1/c \ \Rightarrow \ \dot{V}(x) \leq -(1 - 10\beta c)\|x\|^2 \]

Hence, the origin is exponentially stable and \(\Omega_c \) is an estimate of the region of attraction
Alternative Bound on β

\[
\dot{V}(x) = -\|x\|^2 + 2x^T P g(x) \\
\leq -\|x\|^2 + \frac{1}{8}\beta x_2^3 ([2 \ 5] x) \\
\leq -\|x\|^2 + \frac{\sqrt{29}}{8}\beta x_2^2 \|x\|^2
\]

Over Ω_c, $x_2^2 \leq (1.8194)^2 c$

\[
\dot{V}(x) \leq -\left(1 - \frac{\sqrt{29}}{8}\beta (1.8194)^2 c\right) \|x\|^2 = \left(1 - \frac{\beta c}{0.448}\right) \|x\|^2
\]

If $\beta < 0.448/c$, the origin will be exponentially stable and Ω_c will be an estimate of the region of attraction
Remark: The inequality $\beta < \frac{0.448}{c}$ shows a tradeoff between the estimate of the region of attraction and the estimate of the upper bound on β
Application to Linearization

\[\dot{x} = f(x) = [A + G(x)]x \]

\[A = \frac{\partial f}{\partial x}(x) \bigg|_{x=0}, \quad G(x) \to 0 \text{ as } x \to 0 \]

Theorem: The origin of \(\dot{x} = f(x) \) is exponentially stable if and only if \(A \) is Hurwitz
Proof Of sufficiency: Suppose A is Hurwitz. Choose $Q = Q^T > 0$ and solve the Lyapunov equation $PA + A^TP = -Q$ for P

Use $V(x) = x^TPx$ as a Lyapunov function candidate for $\dot{x} = f(x)$

\[
\dot{V}(x) = x^TPf(x) + f^T(x)Px \\
= x^TP[A + G(x)]x + x^T[A^T + G^T(x)]Px \\
= x^T(PA + A^TP)x + 2x^TPG(x)x \\
= -x^TQx + 2x^TPG(x)x
\]
\[\dot{V}(x) \leq -x^T Q x + 2\|P\| \|G(x)\| \|x\|^2 \]

For any \(\gamma > 0 \), there exists \(r > 0 \) such that

\[\|G(x)\| < \gamma, \quad \forall \|x\| < r \]

\[x^T Q x \geq \lambda_{\text{min}}(Q)\|x\|^2 \iff -x^T Q x \leq -\lambda_{\text{min}}(Q)\|x\|^2 \]

\[\dot{V}(x) < -[\lambda_{\text{min}}(Q) - 2\gamma\|P\|]\|x\|^2, \quad \forall \|x\| < r \]

Choose

\[\gamma < \frac{\lambda_{\text{min}}(Q)}{2\|P\|} \]

The origin of \(\dot{x} = f(x) \) is exponentially stable
Proof of Necessity: Suppose the origin of $\dot{x} = f(x)$ is exponentially stable. View the system

$$\dot{x} = Ax = f(x) - G(x)x$$

as a perturbation of $\dot{x} = f(x)$. Recall that

$$\|G(x)\| < \gamma, \ \forall \|x\| < r$$

Because the origin of $\dot{x} = f(x)$ is exponentially stable, let $V(x)$ be the function provided by the converse Lyapunov theorem over a domain $\{\|x\| < r_0\}$. Use $V(x)$ as a Lyapunov function candidate for $\dot{x} = Ax$.
In the domain \(\{ \| x \| < \min\{r_0, r\}\} \), we have

\[
\frac{\partial V}{\partial x} Ax = \frac{\partial V}{\partial x} f(x) - \frac{\partial V}{\partial x} G(x)x
\leq -c_3\|x\|^2 + c_4 \gamma \|x\|^2
= -(c_3 - c_4 \gamma)\|x\|^2
\]

Take \(\gamma < c_3/c_4 \), and set \(\lambda = (c_3 - c_4 L) > 0 \) \(\Rightarrow \)

\[
\frac{\partial V}{\partial x} Ax \leq -\lambda\|x\|^2, \quad \forall \|x\| < \min\{r_0, r\}
\]

The origin of \(\dot{x} = Ax \) is exponentially stable
Case 2: The origin of the nominal system is asymptotically stable

\[\dot{V}(t, x) = \frac{\partial V}{\partial x} f(x) + \frac{\partial V}{\partial x} g(t, x) \leq -W_3(x) + \left\| \frac{\partial V}{\partial x} g(t, x) \right\| \]

Under what condition will the following inequality hold?

\[\left\| \frac{\partial V}{\partial x} g(t, x) \right\| < W_3(x) \]

Special Case: Quadratic-Type Lyapunov function

\[\frac{\partial V}{\partial x} f(x) \leq -c_3 \phi^2(x), \quad \left\| \frac{\partial V}{\partial x} \right\| \leq c_4 \phi(x) \]
\[\dot{V}(t, x) \leq -c_3 \phi^2(x) + c_4 \phi(x) \| g(t, x) \| \]

If \(\| g(t, x) \| \leq \gamma \phi(x) \), with \(\gamma < \frac{c_3}{c_4} \)

\[\dot{V}(t, x) \leq -(c_3 - c_4 \gamma) \phi^2(x) \]
Example

\[\dot{x} = -x^3 + g(t, x) \]

\(V(x) = x^4 \) is a quadratic-type Lyapunov function for the nominal system \(\dot{x} = -x^3 \)

\[\frac{\partial V}{\partial x}(-x^3) = -4x^6, \quad \left| \frac{\partial V}{\partial x} \right| = 4|x|^3 \]

\(\phi(x) = |x|^3, \quad c_3 = 4, \quad c_4 = 4 \)

Suppose \(|g(t, x)| \leq \gamma |x|^3, \quad \forall \ x, \quad \text{with} \ \gamma < 1 \)

\[\dot{V}(t, x) \leq -4(1 - \gamma)\phi^2(x) \]

Hence, the origin is a globally uniformly asymptotically stable
Remark: A nominal system with asymptotically, but not exponentially, stable origin is not robust to smooth perturbations with arbitrarily small linear growth bounds.

Example

\[\dot{x} = -x^3 + \gamma x \]

The origin is unstable for any \(\gamma > 0 \)
Ultimate Boundedness

Definition: The solutions of $\dot{x} = f(t, x)$ are

- uniformly bounded if $\exists c > 0$ and for every $0 < a < c$, $\exists \beta = \beta(a) > 0$ such that
 $$\|x(t_0)\| \leq a \Rightarrow \|x(t)\| \leq \beta, \quad \forall t \geq t_0 \geq 0$$

- uniformly ultimately bounded with ultimate bound b if $\exists b$ and c and for every $0 < a < c$, $\exists T = T(a, b) \geq 0$ such that
 $$\|x(t_0)\| \leq a \Rightarrow \|x(t)\| \leq b, \quad \forall t \geq t_0 + T$$

 “Globally” if a can be arbitrarily large

 Drop “uniformly” if $\dot{x} = f(x)$
Lyapunov Analysis: Let $V(x)$ be a cont. diff. positive definite function and suppose that the sets

$$
\Omega_c = \{ V(x) \leq c \}, \quad \Omega_\varepsilon = \{ V(x) \leq \varepsilon \}, \quad \Lambda = \{ \varepsilon \leq V(x) \leq c \}
$$

are compact for some $c > \varepsilon > 0$
Suppose

\[\dot{V}(t, x) = \frac{\partial V}{\partial x} f(t, x) \leq -W_3(x), \quad \forall x \in \Lambda, \forall t \geq 0 \]

\(W_3(x) \) is continuous and positive definite

\(\Omega_c \) and \(\Omega_\varepsilon \) are positively invariant

\[k = \min_{x \in \Lambda} W_3(x) > 0 \]

\[\dot{V}(t, x) \leq -k, \quad \forall x \in \Lambda, \forall t \geq t_0 \geq 0 \]

\[V(x(t)) \leq V(x(t_0)) - k(t - t_0) \leq c - k(t - t_0) \]

\(x(t) \) enters the set \(\Omega_\varepsilon \) within the interval \([t_0, t_0 + (c - \varepsilon)/k]\)
Suppose

\[\dot{V}(t, x) \leq -W_3(x), \quad \forall \mu \leq \|x\| \leq r, \quad \forall t \geq 0 \]

Choose \(c \) and \(\varepsilon \) such that \(\Lambda \subset \{ \mu \leq \|x\| \leq r \} \)
Let α_1 and α_2 be class \mathcal{K} functions such that

$$\alpha_1(\|x\|) \leq V(x) \leq \alpha_2(\|x\|)$$

$$V(x) \leq c \Rightarrow \alpha_1(\|x\|) \leq c \iff \|x\| \leq \alpha_1^{-1}(c)$$

$$c = \alpha_1(r) \Rightarrow \Omega_c \subset B_r$$

$$\|x\| \leq \mu \Rightarrow V(x) \leq \alpha_2(\mu)$$

$$\varepsilon = \alpha_2(\mu) \Rightarrow B_{\mu} \subset \Omega_\varepsilon$$

What is the ultimate bound?

$$V(x) \leq \varepsilon \Rightarrow \alpha_1(\|x\|) \leq \varepsilon \iff \|x\| \leq \alpha_1^{-1}(\varepsilon) = \alpha_1^{-1}(\alpha_2(\mu))$$
Theorem (special case of Thm 4.18): Suppose

\[\alpha_1(\|x\|) \leq V(x) \leq \alpha_2(\|x\|) \]

\[\frac{\partial V}{\partial x} f(t, x) \leq -W_3(x), \ \forall \|x\| \geq \mu > 0 \]

\[\forall t \geq 0 \text{ and } \|x\| \leq r, \text{ where } \alpha_1, \alpha_2 \in \mathcal{K}, W_3(x) \text{ is continuous \& positive definite, and } \mu < \alpha_2^{-1}(\alpha_1(r)). \]

Then, for every initial state \(x(t_0) \in \{\|x\| \leq \alpha_2^{-1}(\alpha_1(r))\} \), there is \(T \geq 0 \) (dependent on \(x(t_0) \) and \(\mu \)) such that

\[\|x(t)\| \leq \alpha_1^{-1}(\alpha_2(\mu)), \ \forall t \geq t_0 + T \]

If the assumptions hold globally and \(\alpha_1 \in \mathcal{K}_\infty \), then the conclusion holds for any initial state \(x(t_0) \)
Remarks:

- The ultimate bound is independent of the initial state.
- The ultimate bound is a class \mathcal{K} function of μ; hence, the smaller the value of μ, the smaller the ultimate bound. As $\mu \to 0$, the ultimate bound approaches zero.
Example

\[\dot{x}_1 = x_2, \quad \dot{x}_2 = -(1 + x_1^2)x_1 - x_2 + M \cos \omega t, \quad M \geq 0 \]

With \(M = 0 \), \(\dot{x}_2 = -(1 + x_1^2)x_1 - x_2 = -h(x_1) - x_2 \)

\[V(x) = x^T \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix} x + 2 \int_0^{x_1} (y + y^3) \, dy \quad \text{(Example 4.5)} \]

\[V(x) = x^T \begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix} x + \frac{1}{2} x_1^4 \overset{\text{def}}{=} x^T \mathbf{P} x + \frac{1}{2} x_1^4 \]
\[
\lambda_{\text{min}}(P)\|x\|^2 \leq V(x) \leq \lambda_{\text{max}}(P)\|x\|^2 + \frac{1}{2}\|x\|^4
\]

\[
\alpha_1(r) = \lambda_{\text{min}}(P)r^2, \quad \alpha_2(r) = \lambda_{\text{max}}(P)r^2 + \frac{1}{2}r^4
\]

\[
\dot{V} = -x_1^2 - x_4^4 - x_2^2 + (x_1 + 2x_2)M\cos\omega t
\]
\[
\leq -\|x\|^2 - x_1^4 + M\sqrt{5}\|x\|
\]
\[
= -(1 - \theta)\|x\|^2 - x_1^4 - \theta\|x\|^2 + M\sqrt{5}\|x\|
\]
\[
(0 < \theta < 1)
\]
\[
\leq -(1 - \theta)\|x\|^2 - x_1^4, \quad \forall \|x\| \geq M\sqrt{5}/\theta \equiv \mu
\]

The solutions are GUUB by

\[
b = \alpha_1^{-1}(\alpha_2(\mu)) = \sqrt{\frac{\lambda_{\text{max}}(P)\mu^2 + \mu^4/2}{\lambda_{\text{min}}(P)}}
\]
Perturbed Systems: Nonvanishing Perturbation

Nominal System:
\[\dot{x} = f(x), \quad f(0) = 0 \]

Perturbed System:
\[\dot{x} = f(x) + g(t, x), \quad g(t, 0) \neq 0 \]

Case 1: The origin of \(\dot{x} = f(x) \) is exponentially stable

\[c_1 \| x \|^2 \leq V(x) \leq c_2 \| x \|^2 \]

\[\frac{\partial V}{\partial x} f(x) \leq -c_3 \| x \|^2, \quad \left\| \frac{\partial V}{\partial x} \right\| \leq c_4 \| x \| \]

\[\forall x \in B_r = \{ \| x \| \leq r \} \]
Use $V(x)$ to investigate ultimate boundedness of the perturbed system

$$\dot{V}(t, x) = \frac{\partial V}{\partial x} f(x) + \frac{\partial V}{\partial x} g(t, x)$$

Assume

$$\|g(t, x)\| \leq \delta, \quad \forall t \geq 0, \ x \in B_r$$

$$\dot{V}(t, x) \leq -c_3 \|x\|^2 + \left\|\frac{\partial V}{\partial x}\right\| \|g(t, x)\|$$

$$\leq -c_3 \|x\|^2 + c_4 \delta \|x\|$$

$$= -(1 - \theta)c_3 \|x\|^2 - \theta c_3 \|x\|^2 + c_4 \delta \|x\|$$

$$0 < \theta < 1$$

$$\leq -(1 - \theta)c_3 \|x\|^2, \quad \forall \|x\| \geq \delta c_4 / (\theta c_3) \overset{\text{def}}{=} \mu$$
Apply Theorem 4.18

\[\|x(t_0)\| \leq \alpha_2^{-1}(\alpha_1(r)) \iff \|x(t_0)\| \leq r \sqrt{\frac{c_1}{c_2}} \]

\[\mu < \alpha_2^{-1}(\alpha_1(r)) \iff \frac{\delta c_4}{\theta c_3} < r \sqrt{\frac{c_1}{c_2}} \iff \delta < \frac{c_3}{c_4} \sqrt{\frac{c_1}{c_2}} \theta r \]

\[b = \alpha_1^{-1}(\alpha_2(\mu)) \iff b = \mu \sqrt{\frac{c_2}{c_1}} \iff b = \frac{\delta c_4}{\theta c_3} \sqrt{\frac{c_2}{c_1}} \]

For all \(\|x(t_0)\| \leq r \sqrt{c_1/c_2} \), the solutions of the perturbed system are ultimately bounded by \(b \)
Example

\[
\begin{align*}
\dot{x}_1 &= x_2, \\
\dot{x}_2 &= -4x_1 - 2x_2 + \beta x_2^3 + d(t)
\end{align*}
\]

\[\beta \geq 0, \quad |d(t)| \leq \delta, \forall t \geq 0\]

\[
V(x) = x^T P x = x^T \begin{bmatrix} \frac{3}{2} & \frac{1}{8} \\ \frac{1}{8} & \frac{5}{16} \end{bmatrix} x
\]

\[
\dot{V}(t, x) = -\|x\|^2 + 2\beta x_2^2 \left(\frac{1}{8} x_1 x_2 + \frac{5}{16} x_2^2 \right) \\
+ 2d(t) \left(\frac{1}{8} x_1 + \frac{5}{16} x_2 \right)
\leq -\|x\|^2 + \sqrt{29} \frac{\beta k_2^2}{8} \|x\|^2 + \sqrt{29} \delta \|x\|
\]
\[k_2 = \max_{x^T P x \leq c} |x_2| = 1.8194\sqrt{c} \]

Suppose \(\beta \leq 8(1 - \zeta)/(\sqrt{29} k_2^2) \) \((0 < \zeta < 1) \)

\[\dot{V}(t, x) \leq -\zeta \|x\|^2 + \frac{\sqrt{29}\delta}{8} \|x\| \]
\[\leq -(1 - \theta)\zeta \|x\|^2, \quad \forall \|x\| \geq \frac{\sqrt{29}\delta}{8 \zeta \theta} \overset{\text{def}}{=} \mu \]
\[(0 < \theta < 1) \]

If \(\mu^2 \lambda_{\text{max}}(P) < c \), then all solutions of the perturbed system, starting in \(\Omega_c \), are uniformly ultimately bounded by

\[b = \frac{\sqrt{29}\delta}{8 \zeta \theta} \sqrt{\frac{\lambda_{\text{max}}(P)}{\lambda_{\text{min}}(P)}} \]
Case 2: The origin of $\dot{x} = f(x)$ is asymptotically stable

$$\alpha_1(\|x\|) \leq V(x) \leq \alpha_2(\|x\|)$$

$$\frac{\partial V}{\partial x}f(x) \leq -\alpha_3(\|x\|), \quad \left\| \frac{\partial V}{\partial x} \right\| \leq k$$

$$\forall \ x \in B_r = \{\|x\| \leq r\}, \quad \alpha_i \in \mathcal{K}, \ i = 1, 2, 3$$

$$\dot{V}(t, x) \leq -\alpha_3(\|x\|) + \left\| \frac{\partial V}{\partial x} \right\| \|g(t, x)\|$$

$$\leq -\alpha_3(\|x\|) + \delta k$$

$$\leq -(1 - \theta)\alpha_3(\|x\|) - \theta \alpha_3(\|x\|) + \delta k$$

$$0 < \theta < 1$$

$$\leq -(1 - \theta)\alpha_3(\|x\|), \quad \forall \ \|x\| \geq \alpha_3^{-1} \left(\frac{\delta k}{\theta} \right) \overset{\text{def}}{=} \mu$$
Apply Theorem 4.18

\[\mu < \alpha^{-1}_2(\alpha_1(r)) \iff \alpha^{-1}_3 \left(\frac{\delta k}{\theta} \right) < \alpha^{-1}_2(\alpha_1(r)) \]

\[\iff \delta < \frac{\theta \alpha_3(\alpha^{-1}_2(\alpha_1(r))))}{k} \]

Compare with \(\delta < \frac{c_3}{c_4} \sqrt{\frac{c_1}{c_2}} \theta r \)

Example

\[\dot{x} = -\frac{x}{1 + x^2} \]

\[V(x) = x^4 \quad \Rightarrow \quad \frac{\partial V}{\partial x} \left[-\frac{x}{1 + x^2} \right] = -\frac{4x^4}{1 + x^2} \]

\[\alpha_1(|x|) = \alpha_2(|x|) = |x|^4; \quad \alpha_3(|x|) = \frac{4|x|^4}{1 + |x|^2}; \quad k = 4r^3 \]
The origin is globally asymptotically stable

\[
\frac{\theta \alpha_3(\alpha_2^{-1}(\alpha_1(r)))}{k} = \frac{\theta \alpha_3(r)}{k} = \frac{r \theta}{1 + r^2}
\]

\[
\frac{r \theta}{1 + r^2} \to 0 \text{ as } r \to \infty
\]

\[
\dot{x} = -\frac{x}{1 + x^2} + \delta, \quad \delta > 0
\]

\[
\delta > \frac{1}{2} \Rightarrow \lim_{t \to \infty} x(t) = \infty
\]
Input-to-State Stability (ISS)

Definition: The system \(\dot{x} = f(x, u) \) is input-to-state stable if there exist \(\beta \in \mathcal{KL} \) and \(\gamma \in \mathcal{K} \) such that for any initial state \(x(t_0) \) and any bounded input \(u(t) \)

\[
\|x(t)\| \leq \beta(\|x(t_0)\|, t - t_0) + \gamma \left(\sup_{t_0 \leq \tau \leq t} \|u(\tau)\| \right)
\]

ISS of \(\dot{x} = f(x, u) \) implies

- BIBS stability
- \(x(t) \) is ultimately bounded by a class \(\mathcal{K} \) function of \(\sup_{t \geq t_0} \|u(t)\| \)
- \(\lim_{t \to \infty} u(t) = 0 \Rightarrow \lim_{t \to \infty} x(t) = 0 \)
- The origin of \(\dot{x} = f(x, 0) \) is GAS
Theorem (Special case of Thm 4.19): Let $V(x)$ be a continuously differentiable function such that

$$\alpha_1(\|x\|) \leq V(x) \leq \alpha_2(\|x\|)$$

$$\frac{\partial V}{\partial x} f(x, u) \leq -W_3(x), \quad \forall \|x\| \geq \rho(\|u\|) > 0$$

$\forall x \in \mathbb{R}^n, u \in \mathbb{R}^m$, where $\alpha_1, \alpha_2 \in \mathcal{K}_\infty$, $\rho \in \mathcal{K}$, and $W_3(x)$ is a continuous positive definite function. Then, the system $\dot{x} = f(x, u)$ is ISS with $\gamma = \alpha_1^{-1} \circ \alpha_2 \circ \rho$.

Proof: Let $\mu = \rho(\sup_{\tau \geq t_0} \|u(\tau)\|)$; then

$$\frac{\partial V}{\partial x} f(x, u) \leq -W_3(x), \quad \forall \|x\| \geq \mu$$
Choose ε and c such that

$$\frac{\partial V}{\partial x} f(x, u) \leq -W_3(x), \quad \forall x \in \Lambda = \{\varepsilon \leq V(x) \leq c\}$$

Suppose $x(t_0) \in \Lambda$ and $x(t)$ reaches Ω_ε at $t = t_0 + T$. For $t_0 \leq t \leq t_0 + T$, V satisfies the conditions for the uniform asymptotic stability. Therefore, the trajectory behaves as if the origin was uniformly asymptotically stable and satisfies

$$\|x(t)\| \leq \beta(\|x(t_0)\|, t - t_0), \quad \text{for some } \beta \in \mathcal{KL}$$

For $t \geq t_0 + T$,

$$\|x(t)\| \leq \alpha_1^{-1}(\alpha_2(\mu))$$
\[\|x(t)\| \leq \beta(\|x(t_0)\|, t - t_0) + \alpha_1^{-1}(\alpha_2(\mu)), \quad \forall \, t \geq t_0 \]

\[\|x(t)\| \leq \beta(\|x(t_0)\|, t - t_0) + \gamma \left(\sup_{\tau \geq t_0} \|u(\tau)\| \right), \quad \forall \, t \geq t_0 \]

Since \(x(t) \) depends only on \(u(\tau) \) for \(t_0 \leq \tau \leq t \), the supremum on the right-hand side can be taken over \([t_0, t]\).
Example

\[\dot{x} = -x^3 + u \]

The origin of \(\dot{x} = -x^3 \) is globally asymptotically stable

\[V = \frac{1}{2}x^2 \]

\[\dot{V} = -x^4 + xu \]

\[= -(1 - \theta)x^4 - \theta x^4 + xu \]

\[\leq -(1 - \theta)x^4, \quad \forall |x| \geq \left(\frac{|u|}{\theta} \right)^{1/3} \]

\[0 < \theta < 1 \]

The system is ISS with

\[\gamma(r) = (r/\theta)^{1/3} \]
Example

\[\dot{x} = -x - 2x^3 + (1 + x^2)u^2 \]

The origin of \(\dot{x} = -x - 2x^3 \) is globally exponentially stable

\[V = \frac{1}{2}x^2 \]

\[\dot{V} = -x^2 - 2x^4 + x(1 + x^2)u^2 \]
\[= x^4 - x^2(1 + x^2) + x(1 + x^2)u^2 \]
\[\leq -x^4, \quad \forall |x| \geq u^2 \]

The system is ISS with \(\gamma(r) = r^2 \)
Example

\[\dot{x}_1 = -x_1 + x_2^2, \quad \dot{x}_2 = -x_2 + u \]

Investigate GAS of \(\dot{x}_1 = -x_1 + x_2^2, \quad \dot{x}_2 = -x_2 \)

\[V(x) = \frac{1}{2} x_1^2 + \frac{1}{4} x_2^4 \]

\[\dot{V} = -x_1^2 + x_1 x_2^2 - x_2^4 = -(x_1 - \frac{1}{2} x_2^2)^2 - \left(1 - \frac{1}{4}\right) x_2^4 \]

Now \(u \neq 0 \), \(\dot{V} = -\frac{1}{2} (x_1 - x_2^2)^2 - \frac{1}{2} (x_1^2 + x_2^4) + x_2^3 u \)

\[\leq -\frac{1}{2} (x_1^2 + x_2^4) + |x_2|^3 |u| \]

\[\dot{V} \leq -\frac{1}{2} (1 - \theta) (x_1^2 + x_2^4) - \frac{1}{2} \theta (x_1^2 + x_2^4) + |x_2|^3 |u| \]

\[(0 < \theta < 1) \]
\[-\frac{1}{2} \theta (x_1^2 + x_2^4) + |x_2|^3 |u| \leq 0\]

if \(|x_2| \geq \frac{2|u|}{\theta} \) or \(|x_2| \leq \frac{2|u|}{\theta} \) and \(|x_1| \geq \left(\frac{2|u|}{\theta} \right)^2 \)

if \(\|x\| \geq \frac{2|u|}{\theta} \sqrt{1 + \left(\frac{2|u|}{\theta} \right)^2} \)

\[
\rho(r) = \frac{2r}{\theta} \sqrt{1 + \left(\frac{2r}{\theta} \right)^2}
\]

\[
\dot{V} \leq -\frac{1}{2} (1 - \theta) (x_1^2 + x_2^4), \quad \forall \|x\| \geq \rho(\|u\|)
\]

The system is ISS