SLAM for an AUV using vision and an acoustic beacon

Institute for Systems and Robotics, Instituto Superior Técnico, Technical University of Lisbon, Portugal

Cooperative Navigation and Control of Multiple Robotic Vehicles
Theory and Practice
EECI, Supélec
February 21-25, 2011
Introduction

Motivation

- Applications with ocean robotics have increased dramatically. There are a vast demand for advance navigation and positioning systems for autonomous/remotely operated underwater vehicles
- Challenging problem: Electromagnetic signals do not propagate well below the sea surface
Motivation

- Applications with ocean robotics have increased dramatically. There are a vast demand for advance navigation and positioning systems for autonomous/remotely operated underwater vehicles.
- Challenging problem: Electromagnetic signals do not propagate well below the sea surface.

Approaches

- Acoustic beacon navigation (USBL, LBL, GIB)
- Terrain based navigation
- Vision based SLAM
Body-fixed \(\{B\} \), camera-fixed \(\{C\} \), earth-fixed (inertial) \(\{I\} \), and visual-fixed \(\{V\} \) coordinate frames used in problem

- \(^B_A R \): Rotation matrix form \(\{A\} \) to \(\{B\} \)
- \(^B_Q \): Position of the vector \(Q \) expressed in \(\{B\} \)
- \(^B_P A \): Position of the origin of frame \(\{A\} \) expressed in \(\{B\} \)
Equations of motion

Kinematics

\[
\begin{bmatrix}
\dot{\eta}_1 \\
\dot{\eta}_2
\end{bmatrix} =
\begin{bmatrix}
J_1(\eta_2) & 0_{3\times3} \\
0_{3\times3} & J_2(\eta_2)
\end{bmatrix}
\begin{bmatrix}
\nu_1 \\
\nu_2
\end{bmatrix} \Leftrightarrow \dot{\eta} = J(\eta_2)\nu
\]

\(\eta_1\) – linear position; \(\eta_2\) – attitude; \(\nu_1\) body-fixed linear velocities; \(\nu_2\) – body-fixed angular velocities.
Equations of motion

Kinematics

\[
\begin{bmatrix}
\dot{\eta}_1 \\
\dot{\eta}_2
\end{bmatrix} =
\begin{bmatrix}
J_1(\eta_2) & 0_{3\times3} \\
0_{3\times3} & J_2(\eta_2)
\end{bmatrix}
\begin{bmatrix}
\nu_1 \\
\nu_2
\end{bmatrix} \Leftrightarrow \dot{\eta} = J(\eta_2)\nu
\]

\(\eta_1\) – linear position; \(\eta_2\) – attitude; \(\nu_1\) body-fixed linear velocities; \(\nu_2\) – body-fixed angular velocities.

Dynamics

\[M_{RB} \ddot{\nu} + C_{RB}(\nu)\nu = \tau_{RB}\]

\(M_{RB}, C_{RB}(\nu)\) denote the rigid body inertia matrix and the matrix of Coriolis and Centrifugal terms, and \(\tau_{RB}\) represents the total forces and moments applied on body.

\[\tau_{RB} = \tau + \tau_A + \tau_D + \tau_R + \tau_d\]

\(\tau_R\) – buoyancy and gravity; \(\tau_A\) – added mass term; \(\tau_D\) – damping and lift effects; \(\tau\) – thrusters forces and moments; \(\tau_d\) – input disturbances.
Sensor measurements

Inertial measurement unit (IMU)

Provides measurements of angular velocities $\nu_2 = [p, q, r]^T$ and attitude $\eta_2 = [\phi, \theta, \psi]^T$ with respect to earth-fixed (inertial) $\{I\}$.

Pressure sensor

Measures the depth z.

Acoustic beacon

Range measurements from the position of the vehicle to a single fixed buoy with known position $\|\eta_1 - Q_b\|^2$.

SLAM for an AUV using vision and an acoustic beacon
Sensor measurements

Inertial measurement unit (IMU)

Provides measurements of angular velocities $\nu_2 = [p, q, r]^T$ and attitude $\eta_2 = [\phi, \theta, \psi]^T$ with respect to earth-fixed (inertial) $\{I\}$.

Pressure sensor

Measures the depth z.

SLAM for an AUV using vision and an acoustic beacon
Sensor measurements

Inertial measurement unit (IMU)

Provides measurements of angular velocities $\nu_2 = [p, q, r]^T$ and attitude $\eta_2 = [\phi, \theta, \psi]^T$ with respect to earth-fixed (inertial) $\{I\}$.

Pressure sensor

Measures the depth z.

Acoustic beacon

Range measurements from the position of the vehicle to a single fixed buoy with known position

$$\|\eta_1 - Q_b\|_2$$
Monocular charged-coupled-device (CCD) camera

For feature i, the corresponding output can be written as

$$y_{ccd}^i = \frac{1}{\mu_i} F^c Q_i + v_i$$

with the constraint

$$[0, 0, 1] y_{ccd}^i = 1$$

After some transformations the output equation using $\mathcal{T}Q_i$ can be written

$$y_{ccd}^i = \frac{1}{\mu_i} [F^c P_B + F^c R \mathcal{T} R' (\mathcal{T}Q_i - \mathcal{T} P_B)] + v_i$$
EKF-SLAM algorithm can be decomposed in three steps:

1. Predict the state estimate using the process model and the input signal u.
EKF-SLAM algorithm can be decomposed in three steps:

1. Predict the state estimate using the process model and the input signal u.

2. Update the current state estimate using the measurements including the re-observed features.
EKF-SLAM

EKF-SLAM algorithm can be decomposed in three steps:

1. Predict the state estimate using the process model and the input signal u.

2. Update the current state estimate using the measurements including the re-observed features.

3. Augment the state of the filter if there are new features.
Motivation

The motivation arises from the fact that the EKF-SLAM convergence is very sensitive to the initial guess of μ_i. The initial guess of the μ_i should be close enough to the real value, for the algorithm to converge.
Multiple model EKF-SLAM

Approach

- From a range measurement sensor (or a priori estimate of the image depth) generate as many multiple models as needed.
- Apply a multiple model adaptive estimation scheme.
- Augment the best converged model into SLAM.

SLAM for an AUV using vision and an acoustic beacon
Basic Idea of the MMAE Method
• Construct a bank of N discrete-time Kalman filters, each KF "matched" to each of the N possible models
• Each KF generates (in real-time) a local state-estimate vector and a residual vector
• All of the N available KF residual vectors are used to compute (on-line) the posterior probability $P_k(t)$, $k=1,2, \ldots, N$, that the kth model is indeed the true one (I.e. the one that generates the data)
• The overall MMAE state-estimate is formed by weighting the N local state-estimates by the corresponding posterior probability
• The overall MMAE state-covariance matrix is formed by weighting the local state-covariance matrices by the corresponding posterior probability, including a correction that involves the global conditional mean

The MMAE Filter

\[
\begin{align*}
&u(t-1) \\
&z(t) \\
&EKF 1 \\
&EKF 2 \\
&\ldots \\
&EKF N \\
&S_1(t) \\
&S_2(t) \\
&S_N(t) \\
&\text{Posterior Probability Evaluator} \\
&\text{Residual covariances} \\
&P_1(t) \\
&P_2(t) \\
&P_N(t) \\
&\hat{x}(t/t) \\
&\Pi \\
&\Pi \\
&\Pi \\
&\Sigma
\end{align*}
\]
Simulations

Multiple model EKF-SLAM

Multiple model EKF-SLAM without acoustic beacon

EKF-SLAM

SLAM for an AUV using vision and an acoustic beacon
Simulations

Multiple model

EKF-SLAM

Multiple model EKF-SLAM without acoustic beacon

EKF-SLAM
Conclusions

- The key contribution was the use of multiple model adaptive estimation tools to extend the standard EKF-SLAM.

- The simulation results illustrated the efficiency of this new approach.

- The computation power needed to use the multiple model EKF-SLAM is in the same order of the standard EKF-SLAM after the convergence of the multiple models.